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Considered is the librationsl motion of an artificial satellite of the sun
relative to its center of inertia in a parallel light flow. Derived are the
formulas for the moment of light pressure foreces acting upon the body bounded
by a surface of revolution. The obtained expressions permit the investiga-
tion of rotatlonal motion gtability of a geometrically symmetrical satellite
of the sun whose "tracking"axis of symmetry is directed to the sun.

It was shown in [1] that the principal force P and the principal moment
M of light pressure forces acting on a body of arbitrary form with a uniform
surface reflection coefficient in the parallel light flow fleld are
F=(1—¢) F +eF = F"4 ¢ (F- — F¥) (1)
M={1 —eg M -}-eM ==M"+e(M — M"Y
Here F*, F-, M", M™ are the vectors of forces and torques acting on the

body if 1ts surface were ‘completely absorbing (F', M") or completely reflec-
ting (F-, M), and ¢ 18 the reflection coefficilent.

iz Similarly,

Ft=—bhy R T (vem) dS = — Byt S wndas @)

o (1)
M* = — hq § [R 5 t] (vom) dS = hgt x | R (vem) dS

(59) )

F = — 2k § n (ten)? dS

(5) (3)
M- == — 2Bk S Ry n (ren)2dsS
=)
Here n, 18 a quantity inversely proportional
to the square of the distance from the light source

1117



1118 A.A, Karymov

which has the units of pressure, n 1s a unit vector of the external normal
to the surface, R 1is the radius vector of an arbitrary polnt on the surface
of the body, ¢ 1s a unit vector directed opposite to the light flow,
is the 1llluminated part of the surface which is defined by Equation

Ten >0 (4)

Let us apply Formulas (2 and 3) for computation of the moment acting on
a body bounded by a surface of revolution,equation of which in Cartesian
coordinates has the form (Mg.l)

a2+ y* = R? (z) = f (2) ®)

where R(z) is the cross-sectional radius and z 1s the axls of symmetry.

A body bounded by such a surface will be termed the geometrically symmetric
body. For slmplicity of exposition, we wlll assume that the surface contailns
no planes or cylindrical and conical sections although, as will become appa-
rent subsequently, the integral computation method will also be valild for
these cases as well, The essential assumption 1s only regarding the convex-
ity of the surface which means that the curve f( ) has a single maximum.

The coordinate for the maximum of the function f{z) will be denoted by 2%,
and Ehe cros;-section corresponding to the coordinate z = »* will be termed
the "midship"” cross-section ?maximum cross-section).

The projections of the unit vector n along the external normal on the
x, y and 2z aXes are

(8,)

x x
"= YT @ F LI @OF R@OVIF IR P
Yy . Yy , _ éz_ 6
W TYTO LU, @F R@DVIT R OF (f (2) dz) ()
- Vo f (2 ___R(@ o _dR
" Vi@ F .07 OF VIFiR P (R (2) dz)

Denote, further, by a,, by, ¢, the projections of the unit vector =
on the x, y, z &axes respectively. A transfer from the x, y, # axes to the
x', y', z axes 1s accomplished by means of & rotation about the z-axis such
that the y’-axls would coincide with the projection of thg unlt vector
on the surface x’y’; we pass from the coordinates x’, y’, z to the sur-
face coordinates g, ¢ ; the angle g 1s measured from the x'-axis. Then

ag

be
= gz’ e e ' = R (z) cos
# xV1—c°2+yV1——coz (@ ¢

)

b , )
y=—= V1a002+y,V1ocz’ v =Rz sing
— G - €y

o = V1 —ctsing —c,R’ (2)
Vit RGP
The equation for the terminator Ten =0 is of the form (¥)
VI—c?sing — R (5) =0 9

which determines the integration regions in (2) and (3). Noting that the
represeptation of the unit vector ¢ 1in Fig.l corresponds to the case of

¢o> O and assuming lnner integration_along T , we find that the 1ntegration
reglon consists of two sub-reglons, In the first sub-region the limits of
integration along z are from z,(¢,) to 2,{(e,) , while along o they

are from ¢*(z,00) to m — ¢*(2,0,) , Where

, dS=R(@V1I+I[R (9Fdpdz 8

*) The terminator is the line dlviding the 11luminated and dark side of the
satellite.
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o’ (z
sin @* Sl ) (10)
V1 — g
and where the determination of 2, and 2z, 1s obtained with the aid of Equa-

tion
Ll (2> ) (1

[R" ()2 =

The limits of integration in the second sub-region are z,(e,) to =z,
along z and — #n to %n along ¢ .

In the case ¢,< O, l.e. when the body 1s illuminated from "below" (from
the negative direction of the z-axls), the limits of outer integration in
the second sub-region are, naturally, from 2z, to 2z, . Note that in the
general case of an arbltrary convex surface of revolution the simultaneous
existence of both sub-regions 1s not necessary (the cone, side surface of a
cylinder). Let us denote

Co?

M* = hr x 1 (12)
where I 1s a vector quantity the projections of which on the x , vy, =z
axes are 2y T 7 Yen

1= eama={ § Gz 9 dpdz + { ¢ewaga (13)
(%) z; ¢ 2y —Vym
2y T Zy a1

Iy = S y(x-m)ds= S S H(z,p) dpdz+ S g H (z, ¢) dpdz (14)
(8:) 2, Zy —V/4m
Zy ©—@® Zy 34

I, = S z (v-n) ds=S S zF(z,(p)dq)dz—}—S S zF (z,¢) dpdz (13)
(81) 2 9* 2y —l/sm

In Formulas (13) to (15) the fallowing is used

G(2,9) = (1 — ¢ R (2) F (2) (bocOSP + ag sin @)
Hz¢ =(1— coz)"'/’R (2) F (2) (bysinp — a4 cos ) (16)
F(z,9) =R (2) [V 1 —c?sing — R’ (2)]
The integral -
n—p*
g - oo A
) sin"@ cos@ dp = —— sin
o
Therefore, in the expression for I, all terms with the b, coefficient

are ldentically zero, while in the expression for I1,, the q, terms are
identically zero. Consequently,

n—p*

@ =0 (n=0,1,2,..) 17)

©*

n+}

bo

=0 e —e—— ] 18
Ix 1 —co? I Ly V1i—c? (18)
2z
1,=2 V1—c? S zR (z) (cos @* -+ @* sin ¢*) dz + [zzf (z) + 2,/ (2] +
o 7, 2
1 ) |
a5\ 1@ e dz] (t9)
where Z z:
23 23 B 22

J = Vﬁ—{“[i‘x f(z)dz S A "‘J—X f(2) (@* + sin @* cos §*) d‘}
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Having computed the product v x I, taking into account {18) and {19}, and
carrying out analogous calculations for ¢,< 0 we get

M, = hebp®* (co), M’y+ = — Rgag®* (eo), M7= (20)
Here

D (g} = 2 V’i — cgt \ zR {2} {cos @ - @* sing*) dz -+

N I
PAL LR

Z,
. Tty
+ % S /(2) @ +sing* cos ¥zt —5 (2 f (z) -+ 2 1 (2]

2z

will be an even function of the quantity o,.
It can be easily noted, also, that in the case when the surface of the

body has double symmetry, i.e. R (2) = R (—2z), %, = — 7, (for example, ellip~
sold of revolution), the function o+ (cy) 18 ldentlcally zero.

Let us pass to the calculation of the quantity M . In the projections
on the axes x, ¥y, #, this guantity becomes after substitution of Expression

z-+ R’ (z) R (2)

V1i+ (R (9

M.":2h03 y (v -m)?
)
(51 (1)

X 3y

[ — \ ppompe 2B RE -
M, #—-Zko\ z (v-n)? T ERTaT M =0

()
Substituting 27) to {(10) into (21) and carrying out inner integration
along w© , with (17) taken into account, we obtain
M= dhghy @™ {c), M, = — dhea @ {c), M =0 {22}
Here 2
. — "Rz [z + R (5 R (2]
@ = VT | S

A

1
[cos Q¥ — 3~ cos? g*

= PR@A (1) [z +R (DR()]
— sin §° \—} — g B dz — ey \ = i(zw‘r 2{:};(;}}5 dz

121

As can be easily seen, the function @ (c) 18 expressed for ‘the case of

60> 0 . For a,< 0, the integration in the second term should be between
the limits of 2z, to z,. Consequently, in thlscase, there does not exist
a single expressien for the principal force and moment vectors of light pres-
sure forces for an arbitrary sign of the guantity ¢, . Only in the presence

of double symmetry of the body can 1t be shown that

* R (z)R(:z
D~ (e} = m?wnk f:‘(f}{““z(z})} [z -+ B {2} R (g})} dz =

i

23

@
{ R (2) B (2)

T ople T & @ RG] d (23)

= M“CO

.

7y
AR

Thus, the projections of the principal moment of light pressure forces
acting on & geometrically symmetrical body are

Mx == hoby®olco) , My= —hoap @ {0}, szz 0 (24)

or in vector form

M = ho@{eo)[tX ki, @(ca)= (1— £)P*{co)i-4eD{ca} (25

Here & 13 the unit vector along the axlal direction of the body =z .
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The paper [2] derived an analogous formula for the moment of light forces
without any preliminary expositions, and the method for computation of func-
tion similar to ®@(cp), is not concretely defined.

The function @(ce) will be
called the determining function
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since, as it will be shown 1n the followilng, 1ts form will determine the sta-
bility of the motions being investigated.

In deriving Formulas (20) and (22), the location of the origin of the
coordinates, i.e. the point about which the moment 1s computed, was not in
any way stipulated. It will be stipulated now that the origin of the x, Y
z axes colncldes with the inertia center of the body, and that the axes are
the princilpal central axes of inertia. If for any reason it 1s more conve-
nient to compute the moment about another point on the axls of symmetry of
the body, then, knowing the expressions for the projections of the principal
force and princlpal moment, it 1s always possible to transfer the moment to
the 1nertla center of the body. Such a transfer does not alter the general
form of Formulas (24) and (25§. For example, Fig.2 shows a plot of the func-
tion M(co)/(3/6mR3) for a hemlsphere of radius R for different values of the
reflection coefflicient ¢ , and where the origin of the coordinates is assumed
to be the center of inertia of the hemisphere. Such a plot shows that the
form of the function @(c¢) can be quite complicated.

Let us consider now the influence of the light pressure moment upon the
motion of an artificial satellite of the sun about its center of inertia.
In all subsequent investigations, the motion of the center of inertia itself
is assumed known, l.e. we consider the problem of the motion of an artificial
satellite in & fleld of given forces,.

We will consider the following coordinate systems (Fig.3).

1. A fixed system of coordinates Y, ¥, Z with the origin at the center
of the sun which is the focus of the elliptic orbit of the satellite. The
Z-axls 1s directed along the radius vector to the orbit perihelion, the
X-axis 1s parallel to the orbit perihelion tangent, the Y-axis 1s perpendi-
cular to the plane of the orbit.

2. The orbital system of coordinates x,, y,, ¥, With the origin at the
inertia center of the satellite. The g,- s 5" di%ected along the helio-
centric vertical of the satellite inertia center, Yo 1s perpendicular to the
orbit plane and along tne Y-axls, the x,-axls completes the right-handed
orthogonal coordinate system,

3. The x, y, # set of axes 1s the satellite body fixed system of coor-
dinates., It wiyl be assumed that this 1is the principal set of axes, that the
satellite 1s geometrically symmetrical and that the g-axls is the axis of
symmetry.

The dlrection cosines relating the introduced coordinate systens are
deflned as follows
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‘ X ‘ Y ‘ yA ) " Xy y Yo Zy X Y z
x ! o1 B1 T x| a B=p T o | —cosos |0 sino
y 73 B2 T2 y| o B=B| 7 Yo 0 1 0
z o3 Bz Ts z | a" | B"=208s 1" Zp | —sing | 0| —coss

Taking into account the introduced assumptions, the equations of motion

for the satelllte about its center of mass are given in the form of the Euler
equations

24P 'y (o dq
2 T € — B) gr = heY'® (Y"), B o 44— C) pr= — hgv® (1") @n

dr
Car +B—~A)pg=0

Here 4, B, ¢ are the moments of inertla of the satellite relative to
the x, y, z axes respectively; p, g, r are the projections of the abso-
lute angular veloclty of the satelllte upon these axes. Equations (27) are
augmented by the kinematlcal relationships

dv ) ) da. , . aB , "

W T tee, = gl —er g =B g8 (28
dy’ . ,  da’ . , dp "

G TPV el Gp = pet — e —oy, Gr =8 — B

et " 78"

o =@ —py oo, —o—=g0—pa’ — ey, 5= qB8 — pf

where w 1s the orbltal angular veloclty of the satellite.

For the motion of the satellite along a circular orbit, Equations (27)
and (28) possess the first integral

1
5 (Ap* - B¢ + Cr¥) + hoS @ (1") dy” — o (ApB; + BgB: + Crps) = const  (29)

Prior to studying the stablility of the rotational motion of the satellite
we will consider the influence of the light flow upon the motion of a rigid
body relative to a fixed point at the center of inertia of the body. In
this case, the first integral of motion is of the form

1
=~ (Ap* + Bg? + Cr) +- h.g ® (") dy” = const (30)

This expression can be regarded as an energy integral since the first term
represents the kinetic energy of the body. Let ~ be the angle between the
z-axis and the unit vector 1 . The potentlal energy is then

M b\ O @) dy or T=— hog @ (cos ) sin O 4% (1" =cos®)  (31)

As 1s known [ 3], the stability of equllibrium of a conservatlve system 1s
assured 1f the potential energy of the system has a minimum at the equilib-
rium point. Finding the minimum of the functlon (31) by the usual methods
we get

% = D (cos9) sin® =0 for &, =0, 9, =mn (32)
@11 o ‘
79T = — ko@D (cos U) cos & -+ hy Zcos§ sin? O (33)

Consequently, the equililrium position corresponding to O =0,cos0 =1,
is stable for @ (1) < 0, and the equilibrium position & = x, cos & = —1 is
stable for @ (—1) > 0, These conditions are not only sufficlent but also
necessary.
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Thus, the geometrically symmetrical rigid body rotating about a filxedu
point coinciding with 1ts inertia center and subject to the moment of light
pressure forces necessarily has two positions of equilibrium corresponding
to the coincidence of the axis of symmetry of the body with the direction to
the light source. The stabllity or instability of the equilibrium position
1s determined-by the sign of the function @ (¢,) at the point of equilibrium,

As follows from (32), there are possible positions of equilibrium when
® (cos?) = 0 other than the two indicated ones. The equilibrium positions
for =0 and U =n are termed basic since they always exist and for
® (cos®) = 0 are called intermediate. As follows from (33), the intermedi-
ate position of equilibrium is stable 1f

d®
Teos T >0 for ®(cos®) =0 (34)

The number (even or odd) as well as the 1nterchanéé of stable and unstable
intermediate positions of equilibrium 1is determined by the signs of the
determining functions at the ends of thelr specified intervals, i,e, at the
basic positions of equilibrium. Thus, the function @(co) fully determines
the number, distribution and character of the positions of equilibrium for a
rotating motion of a rigid body 1in a parallel light flow. In the cases when

QO+1)=0 or d®/dcos ¥ =0, ®cos ¢ =0

the minima and maxima of @(co), and consequently the stablility of the posi-
tion of equilibrium should be determined on the basis of higher derivatives
at the extremum polints,

As an example, let us turn to Fig.2 which shows the plot of the function
®(co) for a hemisphere. For ¢ = O the basic position of equilibrium for
9 =0 1s stable, then follows an unstable intermedlate, a stable intermediate,
and an unstable basic position of equilibrium, Fer ¢ = 0.3 and ¢ = 0.7
there exist only two basic positions of equilibrium one of which (for & =0)
1s stable, and the other one unstable., Finally, for ¢ = 1 the basic posli-
tion of equilibrium ¢ =0 1s stable, then follows an unstable intermediate
position, and possibly, a stable basic position of equilibrium.

Let us review the stability conditions for the basic positions of equilib-
rium of a body with a completely absorbing (¢ = 0) or a completely reflecting
(e = 1) surface.

In the first case, the projections of the moment of forces and the deter-
mining function are of the form (20) whence it follows that for co= % 1
end, consequently, 2z, = y,= g*

@* (+1) = nz*R*? (33)

This means that the stability conditions for the basic positions of equil-
1ibrium are of the form

2*Z 0 for Q== 0, 2* >0 for == (36)

Conditlon (36) are contradictory and, consequently, one of the basic posi-
tions of equllibrium is stable and the other unstable, It can be shown that
in the case being consicered &* 1s the coordinate of the center of pressure,
1.e, of such a point about which the moment of the acting forces is zero.
Consequently, the basic positions of equilibrium are stable if the center of
pressure 1is behind the center of mass,

Let us find now the value of the determining function ®~ (¢ for ¢ =2 1.
According to (22)

@ (1) = \R(Z)R (z) [z = R’ (2) R (2)] dz

] 1+ [/ ()P

Since R‘(z) < O for z*< z < z, , then the sufficient condition for the
position cf equilibrium is the inequality

z4+ R (R (O for z2* T2z (38)
Analogously, the sufficlent condition for & = & is of the form

@7
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2R (DR >0 for 2z, z< 2* (39)

If the functlon z - R’ (2) R (z) changes the 'sign in the considered range
of the argument variation, then the integrals must be evaluated according
to (37), and the usual conditions of stability reviewed. Finally, for an
arbitrary reflection coefficient the stability conditions for the basic posi-
tions of equilibrium are of the form

23

5 CR () R (2) [z - R (2 R (9]
Pt *2
(1 —¢)z*R —48\ T = (W (F dz <0 for 9 -=0

.

»

1 ) 2*R*2 - 4 \-Ig {z2) R (2) [z~
- 8) z - 4 7
. 1+ [R ()]
24
The presented method is also applicable for plane, cylindrical as well as
conical sections of the body's surface. In these cases the function ~
must be computed by taking into consideration the specific form of the body
surface.

Let us return to the consideration of the rotational motion of the arti-
ficlal satellite of the sun., Equations (27) and {28) have the following
particular solutions

s n Ky e

- R’ {2 21
#®£{z) 2}

it

{
L
2

dz >0 for 9 —= (40)

p=r= 0; q =W, T' -y e 0‘ 7" == tl

a” —=a =0, a-=F1; ﬁ _;ﬁ" = 0, ﬂ’ == 1 (i)
which correspond to the rotational motion of the"satel}ite about the center
of inertia in such a way that the x, y, g axes track” the orbital system
of coordinates, and in particular, the symmetry axis of the satellite is at

all times coincident with the directlon to the sun. We willl investigate the
stability of such motion by representing P, ¢, ' in the form

p = py ofy, q =g, rwp., re=rob el (42)

The quantities p,, ¢,, 7, represent the axial projections of the satel-
lite angular velocity in the perturbed state. Transforming the integral (29)
we obtatn

1 Y N SV .
= (Ap2 A+ B+ Cr2) ¢ ke \ ® (") dy” — =57 ©* (132 - B3,* -+ B3g%) = const  (43)

Expanding @ (1") into a Taylor serles about v*= + 1 and taking into
consideration in (43) only the guantity @ (41}, we find that for the coordi-
nates in the perturbed state there exists the lntegral (Ay”> 0) (%1)

o (Ap.? + B2+ Cr0) T2 hg® (AT 5 Yau? [(B — A)B 2 -+ (B — OB &1 = coust

Consequently, the unperturbed motion corresponding to y”= + 1 1is stable

for
O(+1)<0, B>A, B>C (45)
and corresponding to y“= — 1 1is stable for
O(—1)>0, B >4, B>C (46)

since in fulrilling conditions (45) and (46), the integral (44) is a sign-
determined positive function of the conrdinates of the perturbed motion.

Thus, there are two steady atate rotational motions corresponding to the
two basic positions of equilibrium in the orbital system of coordinates in
the case of the geometrically symmetrical artificial satellite of the sun in
a circular orbit. The stabiiity of these motions depends,as before, upon
the sign of the determining function at the point considered. However, in
addition, the stabllity conditions must be augmented by the relationships
among the dynamical characteristics which are the moments of inertia of the
satellite, These additional inequalities are stipulated by the orbital
motion of the satellite's center of inertia., We will make & few remarks.

1. It can be shown that the inequalities (45) and (46) will be not only
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sufficlent but also necessary conditions of stability.

2. It can be shown that the last term in (44) 1s stipulated by the field
of the centrifugal forces originating from the satellite's motion in a circu-
lar orbit.

3. In addition to the particular solutions(41) which always exist regard-
less of the form of the function @(y”), the following particular solution is
possible

p=r=0, g=0w; OF"=0 (47)
@=Ty"y &= T a/=71,=0, B=p"=0, fr=1

Solution (47) corresponds to the "tracking" by the satellite of the orbi-
tal system of coordinates in which the symmetry axis of the satellite is at
an angle y relative to the direction of the light source which 1s defined
by the relations

a, =71,"= cosy, a.”=siny (48)

The conditlons of stability for such a motlon also consist of two groups

of' inequalities which are of the form

d®/dy" >0 for @ (1) =0; B>A4, B>C (49)

4. In investigating the motion of an artificial satellite of the sun in
the fleld of light pressure forces, the sun's gravitational force was neglec-
ted. As 18 known, 1n a circular orbit the moment of the gravitatlonal forces
is proportional to «?, where w 18 the orbital angular velocity of the
satellite. The potential energy of the centrifugal forces in (44) is also
proportional to w?. Therefore, to the same order of accuracy that the
moment of the gravitational forces is small compared to the moment of light
pressure forces, the potential energy of the centrifugal force fileld may be
regarded small compared to the potential energy of the light pressure force
field,

5. Pormulas for the projection of the moment of light pressure forces
acting upon a geometrically symmetrical satellite of the sun, and the first
integral resulting from the integration of the equatlons of motion are simi-
lar in structure to the expressions for the moment and the firsc integral of
motion in the case of a satellite rotating about 1ts center of inertia in a
central field of gravitational forces [4 and 5]. Although the consideration
of a physical nature of these forces reveals rore differences than similari-
ties, from the mathematical point of view, the rotational motion of the satel-
lite in the 1°ght pressure force fleld is a more general case of the rotating
motion of the satellite in a central gravitational force field.
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