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Considered is the libratlonal motion of an artificial satellite of the sun 
relative to its center of inertia in a parallel light flow. Derived are the 
formulas for the moment of light pressure forces acting upon the body bounded 
by a surface of revolution. 
tion of 

The obtained expressions permit the investlga- 
rotationa!. motion itability of a geometrically symmetrical satellite 

of the sun whose tracklng axis of symmetry ia directed to the sun. 

It was shown in cl] that the principal force P and the principal moment 
M of fight pressure forces actlng on a body of arbitrary form with a uniform 
surface reflection coefficient in the parallel light flow field are 

F r;l (I _ 6) F++ EF- =Y F++ e(F- - F+) ($1 
M=(I-@MT-j-EM--=M++e(M--M+) 

Here P', F-, Mi, M- are the vectors of forces and torques acting on the 
body if its surface were 'completely absorbing (F', M+) or completely reflec- 
ting (F-, M-), and E Is the reflection coefficient. 

Similarly, 

F- = - 2h,, 
c 

n (z+$ ClS 

A (3) 
M- :I - &, 

c 
R x n (t*rQ2dS 

. 
(a 

Here & iS a quantity inversely proportional 
to the square of the distance from the light source 
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which has the units of pressure, n is a unit vector of the external normal 
to the surface, 
of the body, 

R is the radius vector of an arbitrary point on the surface 
r is a unit vector directed opposite to the light flow, (sl) 

is the illuminated part of the surface which is defined by Equation 

Z-I1 > 0 (4) 

Let us apply Formulas (2 and 3) for computation of the moment actirg on 
a body bounded by a surface of_ revolution,equation of which In Cartesian 
coordinates has the form (Mg.1) 

x2 + y2 = R2 (z) = f (z) (5) 

where A(E) is the cross-sectional radius and z Is the axis of symmetry. 
A body bounded by such a surface will be termed the geometrically symmetric 
body. For simplicity of exposition, we will assume that the surface contains 
no planes or cylindrical and conical sections although, as will become appa- 
rent subsequently, the integral computation method ~$11 also be valid for 
these cases as well. The essential assumption Is only regarding the convex- 
ity of the surface which means that the cur& 
The coordinate for the maximum of the function 

f( ) has a single maximum. 
f a) will be denoted by f a*, 

and the cross-section corres ondlng to the coordinate will be termed 
the "midship" cross-section P 

rl = 7* 
maximum cross-section). 

The projections of the unit vector n along the external normal on the 
x, b and z axes are 

%= I/f (2) +91, [f’ (z)la = R (z) VI; [R’ (z)]z 

% = I/r (z) +y’,4 [f’ (412 = R (4 61 : IR' (ZIP 
(f (z) = $) (6) 

nz =.- l/a f’ (4 R’ (4 

I/f (4 + l/q If’ (41’ = - 7/l + [R’ HIa 
(R’ (z) = d;) 

Denote, further, by co, b,, cc, the projections of the unit vector 1 
on the 

c'a&s'is 
axes respectively. A transfer from the n, y, I axes to the 

X't y', accomplished by means of a rotation about the r-axis such 
that the I/ '-axis would coincide with the projection of the unit vector I 
on the surface x'y'; we pass from the coordinates x', y', z to the sur- 
face coordinates a, cp ; the angle cp Is measured from the x'-axis. Then 

x’ = R (z) cos p 

(7) 

y’ = R (z) sincp 

z.n = Jfq sincp - c,,R’ (z) 

VI + [R’ (z)? 

, 
dS = R (z) 1/i + [R’ (z)J” dq dz (8) 

The equation for the terminator zrn = 0 is of the furm (") 

v1 - co2 sin 'p - c,R’ (z) = 0 (9) 

which determines the integration regions In (2) and (3). Noting that the 
represeptation of the unit vector I In Fig.1 corresponds to the case of 

cc> C and assuming inner Integration along 
y 

we find that the integration 
region consists of two sub-regions. In the f r;t sub-region the limits Of 
integration along .e are from zI (cc) to a,(~,) , while along cp they 
are from rp*(a,cc) to IT - rp*(z,cc) , where 

*) The terminator Is the line dividing the Illuminated and dark side of the 
satellite. 
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(10) 

and where the determination of 
tlon 

2, and E= is obtained with the aid of Equa- 

(23 > %) (11) 

The limits of integration In the second sub-region are Z,(Q) to z3 
along z and - +r to * along m . 

In the case oO< 0 , i.e. when the body Is Illuminated from "belowW (from 
the negative direction of the z-axis), the limits of outer Integration In 
the second sub-region are, naturally, from t, to Note that In the 
general case of an arbitrary convex surface of revof&on the simultaneous 
existence of both sub-regions Is not necessary (the cone, side surface of a 
cylinder). Let us denote 

hf+ = h& x I 

where 1 Is a vector quantity the projections of which on the x , y 
axes are 5 

I, n-v 
r, = 

s 
Z(T.II) ds= 

(8,) 

1 1 c(z,‘P)dWz+~ ‘r G(z,cp)dqdz 

z, wp’ z1 -‘/m 
f, n-v 

I,,= 1 y(r,n)ds= 1 1 H(z,@dqdz+ 4 ‘r H (z, cp) dqdz 
(81) 2, v* za -‘1,~ 

I, n-v 21 ‘lc 
I, = 

s 
z (r.n) ds = 

s s 
zF (z, 0) d9 dz + 

s s 
zF (2, cp) dq dz 

L%) 2, ‘D* z* --‘/c 

(12) 

, t 

(13) 

(1.4) 

(15) 

In Formulas (13) to (15) the following Is used 

G (z, cp) = (1 - co*)-'I* R (z) F (t) (6, cos rp + a0 sin cp) 

H (2, cp) .= (1 - c~*)-‘~~R (z) F (z) (6, sincp - a,, COST) 

F (z, cp) = R (z) [.r/ 1 - co2 sin 'p -- c,R’ (z)J 
The Integral - 

z-v= 

c si nnq cos cp drp = --& SI II . nt1 
z-v* 

‘p.. -0 (n = 0, I, 2, . . .) 
G 

(1’3 

(17) 

Therefore, In the expression for I, all terms with the b, coefficient 
are Identically zero, 
Identically zero. 

while In the expression for I,, the 
Consequently, 

a0 terms are 

21 

I, = 2 VI - co* 
s 

zR (z) (COST* + q* sirIT*) dz i- F [zJ (zz) + z,/ (zJ1 + 

21 

i-nL.[~~-S’f(z)dz.-~i(z)dz] (1% 

where 21 f. 

I¶ 21 

J E r/ 1 _ Co2 in[+ \ f (2) dz -i- 1 f (Z) dz] - r f (Z) @* + sincp* coscp*) dz 1 
J 

21 22 I 



Eaving computed the product z x 1, taking into account (18) and (X9), and 
carrying out analogous calculations for cO< 0 we get 

will be an even function of the quantity co. 

It can be easily noted, also, that in the case when the surface of the 
body has double symmetry, i.e. 
soid of revolution), 

R (2) z R (-- 21, Z2 = - 21 (for example, ellip- 
the function @*(co) Is identically zero. 

Let us pass to the calculation of' the quantity M-. In the projections 
z,the axes x8 Y, tt this quantity becomes after substitution of Expression 

Substltutlng 7) to (10) into (al) and carrying oit inner integration 
along cp , with t 17) taken Into account, we obtaln 

&fX-= 4&&@- f&J* h$- = -4hga#D- (cpf* Mz- =o G3 

Here 

cos y l  

- -$- cos3 y* - 

As c"p;; ezs;lg seen, the function @ (CO) is expressed for the case of 
co>0 0 the integi-ation in the second term should be between 
the limits of "z to' z1 s Consequently, in th%scase, there does not exist 
a single egress on for the principal. force and moment vectors of light pres- I 
sure forces for an arbitrary sign of the quantity co . Only in the presence 
of double symmetry of the body can It be shown that 

R’ (z) R (z)] dz (23) 

moment of fight pressure forces Thus, the projections of the principal 
acting on a geometrically eymmetrfcal body are 

M, = hoboQo(co), My= -km(I) (co), iv,==0 (34) 

or in vector form 

M = ho@(~o)[~xk], cD(cd= (I- &)Ot(CO)i-(I&II~~.(Cd) 
L 

(%R 

Here k 2s the unit vector along the axial direction of the body z . 

-C R’ (z) R fzf] d; =c 
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The paper [23 derived an analogous formula for the moment of light forces 
without any preliminary expositions, and the method for computation of func- 
tion similar to @(CO), Is not concretely defined. 

The function @(CO) will be 
called the determining function 

Fig. 2 Flg. 3 

since, as It will be shown In the following, Its form will determi;le the sta- 
bility of the motions being investigated. 

In deriving Formulas (20) and (22), the location of the origin of the 
coordinates, I.e. the point about which the moment Is computed, was not in 
any way stipulated. It will be stipulated now that the origin of the 2, y, 
z axes coincides with the Inertia center of the body, and that the axes are 
the principal central axes of Inertia. If for any reason It Is more conve- 
nient to compute the moment about another point on the axis of symmetry of 
the body, then, knowing the expressions for the projections of the principal 
force and principal moment, it Is always possible to transfer the moment to 
the Inertia center of the bod 
form of Formulas (24) and (25 3: 

Such a transfer does not alter the general 
For example, Fig.2 shows a plot of the func- 

tion @(c#/~~TcR~) for a hemisphere of radius R for different values of the 
reflection coefficient e and where the origin of the coordinates Is assumed 
to be the center of Inerti; of the hemisphere. Such a plot shows that the 
form of the function @(CO) can be quite complicated. 

Let us consider now the Influence of the light pressure moment upon the 
motion of an artificial satellite of the sun about Its center of Inertia. 
In all subsequent Investigations, the motion of the center of inertia itself 
Is aasumed known, I.e. we consider the problem of the motion of an artificial 
satellite In h. field of given forces. 

We will consider the following coordinate systems (Flg.3). 

1. A fixed system of coordinates X, Y, 2 with the origin at the center 
of the sun which Is the focus of the elliptic orbit of the satellite. The 
Z-axis Is directed along the radius vector to the orbit perihelion, the 
x-axis Is parallel to the orbit perihelion tangent, the Y-axis 1s perpendl- 
cular to the plane of the orbit. 

2. The orbital system of coordinates 
Inertia center of the satellite. The ,,-a% Y 

with the origin at the 
i'd%ected along the hello- 

centric vertical of the satellite inertia center, I/O 1s perpendicular to the 
orbit plane and along tne Y-axis, 
orthogonal coordinate system. 

the &,-axis completes the right-handed 

3. The x, 
dinates. It wl '1 

set of axes Is the satellite body fixed system of coor- 
i Ibe assumed that this Is the principal set of axes that the 

satellite Is geometrically symmetrical and that the g-axis Is the a& of 
symmetry. 

The direction cosines relating the Introduced coordinate systelns are 
defined as follows 
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x I a1 81 Tl x ci P=B1 T x0 - cos 6 0 sin o 

Y a2 Pz 7s Y a' P'=Pz 7' YO 0 1 0 
z a3 P3 r3 2 a” p” = p3 7” 20 -sin 6 0 - CO.7 6 

Taking into account the introduced assumptions, the equations of motion 
for the satellite about Its center of mass are given in the form of the Euler 
equations 

A $ + (C - B) qr = h,f@ (yy, B $ + (A - C) pr = - h,yD (7”) (27) 

Here A, 8, C are the moments of inertia of the satellite relative to 
the X, Y, z axes respectively; p, 9, f are the projections of the abso- 
lute angular velocity of the satellite upon these axes. Equations (27) are 
augmented by the kinematical relationships 

& 
--&- = ry’ - qT* + aa, 

W -= 
dt py” - ry + oa’, 

df’ 
dt= qT-pPT’-toa”, 

da 
3 = ra’ - qa” - oy, 

4 
-= 

dt rP’ - qP” 
da' -= 
dt pa” - ra - of, W 

-&- = pp” - rp 
da" d/3” 

yji-=qa-pa’-w-f, x=qp--pp' 

(28) 

where UJ is the orbital angular velocity of the satellite. 

For the motion of the satellite along a circular orbit, Equations (2'7) 
and (28) possess the first Integral 

s Up2 -I- Bq2. + Cr2) i- ho\ @ (~‘7 df’ - o (Ap& f Bq/32 + Cr/33) = coast (29) 

Prior to studying the stability of the rotational motion of the satellite 
we will consider the Influence of the light flow upon the motion of a rigid 
body relative to a fixed point at the center of inertia of the body. In 
this case, the first Integral of motion Is of the form 

+- (A$ + Bq2 + Cr2) $- h4 1 D (1”) d-f = const (30) 

This expression can be regarded as an energy integral since the first term 
represents the kinetic energy of the body. Let _ be the angle between the 
z-axis and the unit vector 7 . The potential energy is then 

n = 11, \ CI, (f’) dy” or II=-ho 
s 
CD (cos 6) sin 6 d6 (f’ = cos 6) (31) 

c 

As is bown [3], the stability of equilibrium of a conservative system Is 
assured If the pbtentlal energy of the system has a mlnlmum at the equlllb- 
rlum point. Finding the minimum of the function (31) by the usual methods 
we get 

drI ___ 
d6 

ho@ (cos 6) siri 6 = 0 for 6, = 0, 6, = a (32) 

cl'11 
s= - h,@ (cos0)cos 6 _1- ho&-g sin2 6 (33) 

Consequently, the equlll?+rlum position corresponding to 6 = 0, COST = 1, 
Is stable for CD (i)<O, and the equlllbrlum position 6 = n, cos6 = -1 Is 
stable for @(__1)> 0. These conditions are not only sufficient but also 
necessary. 
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Thus, the geometrically symmetrical rigid body rotating about a fixeL 
point coinciding with Its Inertia center and subject to the moment of light 
pressure forces necessarily has two positions of equlllbrlum corresponding 
to the coincidence of the axis of symmetry of the body with the direction to 
the light source. The stability or Instability of the equilibrium position 
is determined-by the sign of the function @(c,) at the point of equilibrium. 

As follows from (32), there are possible positions of equilibrium when 
@ (COSff) = 0 other than the two lndlcated ones. The equlllbrIum positions 
for 6 z 0 and 6 = z are termed basic since they always exist and for 
Q, (cos 6) = 0 are called Intermediate. As follows from (33), the lntermedl- 
ate position of equilibrium Is stable If 

i&&o for @ (cos 6) = 0 

The number (even or odd) as well as the lnte;chan& of stable and unstable 
Intermediate positions of equilibrium Is determined by the signs of the 
determining functions at the ends of their specified intervals, I.e. at the 
basic positions of equllIbrIum. Thus, the function @(CO) fully determines 
the number, distribution and character of the positions of equllIbrlum for a 
rotating motion of a rigid body In a parallel light flow. In the cases when 

D(+l) s 0 or d@/d cm 6 ~0, 0~0s 6 = 0 

the minima and maxima of a)(co), and consequently the stability of the posl- 
tion of equilibrium should be determined on the basis of hlgher derivatives 
at the extremum points. 

As an example, let us turn to Fig.2 which shows the plot of the function 
@(CO) for a hemisphere. For c = 0 the basic position of equllIbrIum for 
fj=O Is stable, then follows an unstable Intermediate, a stable Intermediate, 
and an unstable basic position of equlllbrlum. Fcr E = 0.3 and E = 0.7 
there exist only two basic positions of equilibrium one of which (for 6=0) 
Is stable, and the other one unstable. Finally, for C = 1 the basic posl- 
tion of equilibrium 6 =p Is stable, then follows an unstable Intermediate 
position, and possibly, a stable basic position of equilibrium. 

Let us revlew the stability conditions for the basic positions of equllib- 
rlum of a body with a completely absorbing (c = 0) or a completely reflecting 
(E = 1) surface. 

In the first case, the projections of the moment of forces and the deter- 
mining function are of the form (20) 
snd, consequently, zl= *2= z* 

whence it follows that for cc= f 1 

@,+(fi) = ,72*J?*4 (35) 

This means that,the stability conditions for the basic positions of equi- 
librium are of the form 

z-<0 for 6 - 0, z* > 0 for 8 = jY (36) 

Condltlon (36) are contradictory and, consequently, one tif the basic posl- 
tlons of equilibrium 1s stable and the other unstable. It can be shown that 
In the case belna considered I* is the coordinate of the center of oressure. 
I.e. of such a point about which the moment of the acting forces Is zero. ’ 
Consequently, the basic positions of equilibrium are stable If the center of 
pressure Is behind the center of mass. 

Let us find now the value of the determining function @-(c,,) for c = f 1. 
According to (22) 

w (1) = - 51 
\ 

'R (z) R' (z) [z + R’ (z) R (z)] dz 

:. I + [R’ (z)]” (37) 

Since R'(z) < 0 for r*; z < I, , then the sufficient condition for the 
position cf equilibrium Is the Inequality 

z + R’ (4 R (4 < 0 for 2* < z < zz 

An;logously, the sufficient condition for 6 -=x Is of the form 
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z t- R’ (2) R (z) > 0 for z4 < z < z* 

If the function Z f Ii' (2) R (I) changes the,slgn In the considered range 
of the argument variation, then the integrals must be evaluated according 
to (37), and the usual conditions of stability reviewed. Finally, for an 
arbitrary reflection coefficient the stability conditions for the basic posl- 
tlons of equilibrium are of the form 

(1 -- E) z’R*’ -44~ \ 
f3 R (z) R’ (z) [z -:- R’ (z) R (z)] 

1+ If{’ (d12 dz < 0 for 0 72 () 

;* 

(1 - E) z*R*2 -1.. 4~ ‘*It (z) R' (z) lz t R' (z) R (2)) 
\ 1 -I- IH’ (z)]2 dz > 0 for 6 = JI . (40) 
L. 

The presented method Is also applicable for plane, 
conical sections of the body's surface. 

cylindrical as well as 
In these cases the function _ 

mu;nua~~ computed by taking Into consideration the specific form of the body 
. 

Let us return to the consideration of the rotational motion of the artl- 
flclal satellite of the sun. 
particular solutions 

Equations (27) and (28) have the following 

p:rz._(l; 9"@; r' :._ 7 _:: 0, rv := +l 

a" ZL n' Y. 0, (1 -. 51; p -- p 0 -- (1, p' rz 1 (‘,I) 
which correspond to the rotational motion of the satellite about the center 
of inertia ln such a way that the x, y, I axes wtrack' the orbital system 
of coordinates, and ln particular, the symmetry axis of the satelllte Is at 
all times coincident with the direction to the sun. We will investigate the 
stability of such motion by representing P, 4, f In the form 

The quantities P,, 9*, rr represent the axlal projections of the satel- 
lite angular velocity In' the perturbed state. Transforming the Integral (29) 
we obtain 

;',- (-.Ip," + iYq** + Cr,?) -; h, \ (1) (TO) J;" - 7;-. o'? (-191" .I- I1j," -t_ Z&?) = cchst 

Expanding @(7#) Into a'jlaylor series about y* 

(II;{) 

=il 
consideration In (43) only the quantity 

and taking into 
(b (+ll, we find that for the coordl- 

nates in the perturbed state there exists the Integral (by"> 0) ('li, 

l/J2 (‘Jp*2 + u9*2 + Cr,2) ?I h"(I) (-t!);\r" -j- 'j,o,' [(I1 - /l)(j1' + (B - C)B,"j = conjt 

Consequently, the unperturbed motion corresponding to y'= + 1 is stable 
for 

@(-l-l) < 0, B>A,B>C (45) 

and corresponding to y"= - 1 Is stable for 

(I)(-l)>O, B>‘4, B>C (46) 

since In fulfllllng conditions (45) and (46), the Integral (44) la a sign- 
determined positive function of the coordinates of the perturbed motion. 

Thus, there are two steady atate rotational motions corresponding to the 
two basic positions of equlllbrlum In the orbital system of coordinates In 
the case of the geometrically symmetrical artificial satellite of the sun in 
a circular orbit. The stablilty of these motions depends,as before, upon 
the sign of the determining function at the polnt considered. However, In 
addltlon, the stability condltlons must be augmented by the relationships 
among the dynamical characteristics which are the moment6 of inertia of the 
satellite. These additional Inequalities are stipulated by the orbital 
motion of the satellite's center of inertia. We will make a few remarks. 

1. It can be shown that the Inequalities (45) and (46) will be not only 
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sufficient but also necessary conditions of stability. 

2. It can be shown that the last term in (44). 1s stipulated by the field 
of the centrifugal forces originating from the satellite's motion In a clrcu- 
lar orbit. 

3. In addition to the particular solutIons(41) which always exist regard- 
less of the form of the function @('I"), the following particular solution Is 
possible 

p=r=o, q=o; W,“) = 0 (47) 

ax=rl”, a”= x --7x; a,.‘= y,’ = 0, p = fi” = 0, fi’= 1 

Solution (47) corresponds to the "tracking" by the satellite of the orbl- 
tal system of coordinates in which the symmetry axis of the satellite Is at 
margle x relative to the direction of the light source which is defined 
by the relations 

ale = 7," = co3x, a x * = s’inx (48) 

The conditions of stability for such a motion also consist of two groups 
of inequalities which are of the form 

dO,ldy” > 0 for a) (y”) = 0; B>A, B>C 
4. In Investigating the motion of an artificial satellite of the sun in 

the field of light pressure forces, 
ted. 

the sun's gravitational force was neglec- 
As Is known, in a circular orbit the moment of the gravitational forces 

1s proportional to ula, where 
satellite. 

U) is the orbital angular veloclt 
The potential energy of the centrifugal forces in (4 g 

of the 
) 1s also 

proportional to u?. Therefore, to the same order of accuracy that the 
moment of the gravitational forces Is small compared to the moment of light 
pressure forces, the potential energy of the centrifugal force field may be 
regarded small compared to the potential energy of the light pressure force 
field. 

5. Formulas for the projection of the moment of light pressure forces 
acting upon a geometrically symmetrical satellite of the sun, and the first 
integral resulting from the Integration of the equations of motion are siml- 
lar In structure to the expressions for the moment and the flrsc integral of 
motion In the case of a satellite rotating about Its center of Inertia in a 
central field of gravitational forces (4 and 53. Although the consideration 
of a physical nature of these forces reveals eore differences than slmllarl- 
ties, from the mathematical point of view, the rotational motion of the satel- 
lite in the l'.ght pressure force field la a more general case of the rotatlng 
motion of the satellite in a central gravitational force field. 
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